Transcriptional Regulation of the β-Type Carbonic Anhydrase Gene bca by RamA in Corynebacterium glutamicum

نویسندگان

  • Adnan Shah
  • Bernhard J. Eikmanns
چکیده

Carbonic anhydrase catalyzes the reversible hydration of carbon dioxide to bicarbonate and maintains the balance of CO2/HCO3- in the intracellular environment, specifically for carboxylation/decarboxylation reactions. In Corynebacterium glutamicum, two putative genes, namely the bca (cg2954) and gca (cg0155) genes, coding for β-type and γ-type carbonic anhydrase, respectively, have been identified. We here analyze the transcriptional organization of these genes. The transcriptional start site (TSS) of the bca gene was shown to be the first nucleotide "A" of its putative translational start codon (ATG) and thus, bca codes for a leaderless transcript. The TSS of the gca gene was identified as an "A" residue located at position -20 relative to the first nucleotide of the annotated translational start codon of the cg0154 gene, which is located immediately upstream of gca. Comparative expression analysis revealed carbon source-dependent regulation of the bca gene, with 1.5- to 2-fold lower promoter activity in cells grown on acetate as compared to glucose as sole carbon source. Based on higher expression of bca in a mutant deficient of the regulator of acetate metabolism RamA as compared to the wild-type of C. glutamicum and based on the binding of His-tagged RamA protein to the bca promoter region, we here present evidence that RamA negatively regulates expression of bca in C. glutamicum. Functional characterization of a gca deletion mutant of C. glutamicum revealed the same growth characteristics of C. glutamicum ∆gca as that of wild-type C. glutamicum and no effect on expression of the bca gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum.

SugR, RamA, GlxR, GntR1, and a MarR-type transcriptional regulator bind to the promoter region of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH), essential for glycolysis in Corynebacterium glutamicum. We previously showed that SugR, a transcriptional repressor of phosphotransferase system genes for the sugar transport system, is involved in the downregulation of gapA e...

متن کامل

Development of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum

Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...

متن کامل

Characterization of OxyR as a Negative Transcriptional Regulator That Represses Catalase Production in Corynebacterium diphtheriae

Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat) encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H(2)O(2). In C. diphtheriae C7(β), both catalase activity and cat transcription decreased ~2-fold during transition from exponential growth to early stationary phase. Prototypic O...

متن کامل

Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum

Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genom...

متن کامل

Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum.

Corynebacterium glutamicum is a gram-positive soil microorganism able to utilize a large variety of aromatic compounds as the sole carbon source. The corresponding catabolic routes are associated with multiple ring-fission dioxygenases and among other channeling reactions, include the gentisate pathway, the protocatechuate and catechol branches of the beta-ketoadipate pathway and two potential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016